Electrical and Magnetic Properties of New Mixed Transition Metal Sulfides BaKCu₃ MS_4 (M = Mn, Co, Ni)

M. Mouallem-Bahout,¹ O. Peña, and C. Carel

Laboratoire CSIM, UMR du CNRS 6511, Université de Rennes 1, CS 74205, 35042 Rennes Cedex, France

and

A. Ouammou

Laboratoire Matériaux et Protection de l'Environnement, Département de Chimie, Faculté des Sciences Dhar Mehraz, Université Sidi Mohamed Ben Abdellah, B.P. 1796 Atlas, Fès, Morocco

Received July 7, 2000; in revised form December 4, 2000; accepted December 8, 2000

New transition metal sulfides BaKCu₃ MS_4 (M = Mn, Co, Ni) were prepared from BaCO₃, K₂CO₃, and the corresponding transition metal oxides by CS₂/Ar sulfurization. The materials are based on a common structural pattern consisting of 2-D arrangements of MS_4 tetrahedra linked by edges, crystallizing in the tetragonal ThCr₂Si₂-type structure in space group *I4/mmm*. Electrical resistivity measurements show that the new phases are semiconducting. The temperature dependence of magnetic susceptibility shows different behaviors depending on the substituting transition element: the data for BaKCu₃MnS₄ can be fitted to the Curie–Weiss equation ($\mu_{eff} = 2.50 \ \mu_B$ per manganese ion) while magnetic ordering occurs for BaKCu₃CoS₄ ($T_N \sim 12$ K). BaKCu₃NiS₄ exhibits temperature–independent paramagnetic behavior. © 2001 Academic Press

Key Words: quaternary sulfides; layered structure; magnetic interactions; Néel temperature.

1. INTRODUCTION

Transition metal intercalates of sulfur-based compounds have attracted growing interest in recent years because of their similarity to the high-temperature copper oxide superconductors (1) and their potential applications in important technologies such as cathodes in electrochemical cells (2, 3). The mixed transition metal sulfides with the formula $ACu_{2x-1}MS_{2x}$ (A = K, Rb, Cs; M = Fe, Mn; x = 1, 2) that we have been studying recently belong to this group of compounds with the tetragonal ThCr₂Si₂-type structure (4). In our continuing exploration of new solid-state copper sulfides, we report, in this paper, the results of a partial

¹To whom correspondence should be addressed. E-mail: mona. bahout@univ-rennes1.fr.

substitution of both Ba and Cu within the Ba–Cu–S system. This led to the isolation of new copper-based sulfides materials, $BaKCu_{3.5}Fe_{0.5}S_4$ (5), $BaKCu_3ZnS_4$ (6), and $BaKCu_3MS_4$ (M = Mn, Co, Ni). The structural characterization and electrical and magnetic properties of those latter compounds are discussed.

2. EXPERIMENTAL SECTION

2.1. Synthesis

The procedure to obtain copper-based sulfides involves sulfurization in a stream of CS₂ carried by Ar gas. The starting materials BaCO₃, K₂CO₃, CuO, and the corresponding transition metal oxide (MnO₂,CoO, or NiO) were mixed in an agate mortar in a stoichiometric ratio. The powder mixture was then placed in an alumina boat and heated in a tube furnace in a CS₂/Ar atmosphere at any temperature in the range 850°C-950°C, whatever the phase may be. After ~7 hours, the furnace was shut off and allowed to cool in a stream of dried argon. All of the samples are dark gray and air stable. Their purity was examined by powder X-ray diffraction analysis.

2.2. Physical Measurements

Quantitative microprobe analyses were carried out with a JEOL JSM-6400 scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS) detector. The analyses were performed on a large number of different surface points on each grain in order to confirm the homogeneity of the products and the composition of the samples (Table 1). The powder X-ray diffraction (PXD) data were collected with a Philips computer-controlled powder diffractometer operating at 35 kV, 35 mA. CuK_a radiation

Results of the Elemental Analysis of BaKCu ₃ MS_4 ($M = Mn$, Co, Ni) (Accuracy±5%)						
Composition	Ba (at.%)	K (at.%)) Cu (at.%	%) M (at.%)	S (at.%)	
	В	aKCu ₃ M	nS ₄			
Experimental	9.79	11.17	29.27	9.39	40.50	
Calculated	10.00	10.00	30.00	10.00	40.00	
	В	aKCu₃Co	S_4			
Experimental	9.81	12.05	28.62	9.98	39.58	
Calculated	10.00	10.00	30.00	10.00	40.00	
	В	aKCu₃N	iS4			
Experimental	9.80	12.05	28.62	9.98	39.59	

10.00

30.00

10.00

40.00

Calculated

10.00

TADIE 1

FIG. 1. Structural arrangement for BaKCu₃ MS_4 (M = Mn, Co, Ni).

was used in the 2 Θ range 10°-60° for the purpose of identification and phase purity determination and in the leastsquares refinement of the unit cell parameters. Transport measurements were carried out on sintered pellets ($\sim 500^{\circ}$ C in a CS_2 atmosphere) by a standard four-probe technique with a closed-cycle cryostat (TBT, Air Liquide) from room temperature to ~ 75 K for the nickel and manganese compounds and to $T \sim 120 \text{ K}$ for the cobalt phase. Below 120 K, the resistivity of the latter compound was too high to be detected with our setup. Ohmic contacts were made by attaching gold threads to four spots of conducting silver paste on the side of a brick-shaped polycrystalline pellet. Magnetic susceptibility measurements were performed with a SQUID magnetometer (SHE VTS-906) on polycrystalline materials. Field dependence studies were always performed first, and a suitable magnetic field was chosen from the linear region for temperature dependence measurements.

3. RESULTS AND DISCUSSION

3.1. Structure Determination

All of the materials were examined by X-ray powder diffraction for the purpose of identification and phase purity determination. The powder patterns could be indexed in a tetragonal cell, with the well-known layered ThCr₂Si₂ structure (Fig. 1). It consists of a 2-D arrangement of MS_4 tetrahedra sharing all edges, extended in the ab plane and pointing up and down with their apices. The mixed transition elements Cu and M (M = Mn, Co, or Ni) occupy the centers of the tetrahedra either in a random way or in a preferential order. Owing to the small difference in scattering factors between Cu and M, any crystallographic ordering on the tetrahedral site may evade detection by means of classical X-ray powder diffraction. However, the most probable effect is that the transition element M would randomly occupy the copper site.

The Ba/K ions, eight-coordinated by S ions, are located between the $(Cu_{1.5}M_{0.5}S_2)^{1.5-}$ layers. A statistical disorder of K⁺ and Ba²⁺ on the same site might probably occur owing to similar ionic radii (1.78 Å and 1.74 Å for K⁺ and Ba^{2+} , respectively). In Table 2 are given the least-squares refined unit cell parameters of the compounds studied in this work, along with those of similar phases reported previously. A comparison of the *d* spacings is given in Table 3.

3.2. Transport Properties

The mixed alkali/alkaline earth-based phase $Ba_{0.80}K_{0.20}$ Cu_2S_2 exhibits a metallic behavior which contrasts with the semiconducting behavior of the parent compound BaCu₂S₂. The difference has been attributed to the presence of a certain amount of Cu^{2+} (d^9) in $Ba_{0.80}K_{0.20}Cu_2S_2$ while copper ions are monovalent Cu^+ (d^{10}) in BaCu₂S₂ (7, 8). We decided to investigate structurally related systems in which a larger concentration of copper ions has been replaced by nonisoelectronic transition elements. Figure 2 shows that the resistivity of BaKCu₃MS₄ compounds increases with

TABLE 2 Unit Cell Parameters for BaKCu₃ MS_4 (M = Mn, Co, Ni) **Refined from Powder X-Ray Patterns**

Compound	a (Å)	<i>c</i> (Å)	
BaKCu ₃ MnS ₄	3.920(2)	12.987(4)	
BaKCu ₃ CoS ₄	3.892(3)	12.869(2)	
BaKCu ₃ NiS ₄	3.874(2)	12.775(4)	
$BaKCu_3ZnS_4$ (6)	3.903(3)	12.964(2)	
$Ba_{0,80}K_{0,20}Cu_2S_2(8)$	3.900(1)	12.686(2)	
$BaCu_2S_2$ (7)	3.908(1)	12.656(2)	

Note. The estimated standard deviation is given in parentheses.

 TABLE 3

 Powder X-Ray Diffraction Data of BaKCu₃MS₄

 (M = Mn, Co, Ni), Space Group I₄/mmm

			Bał	KCu ₃ M	nS ₄	$BaKCu_3CoS_4$		$BaKCu_3NiS_4$			
h	k	l	d_{calc}	$d_{\rm obs}$	I/I_0	d_{calc}	$d_{\rm obs}$	I/I_0	d_{calc}	$d_{\rm obs}$	I/I_0
0	0	2	6.493	6.488	100	6.435	6.451	47	6.388	6.384	100
1	0	1	3.753	3.751	21	3.724	3.725	22	3.707	3.708	3
0	0	4	3.247	3.248	28	3.218	3.220	36	3.194	3.186	75
1	0	3	2.906	2.903	17	2.882	2.883	100	2.866	2.864	26
1	1	0	2.772	2.768	13	2.752	2.753	17			
1	1	2	2.549	2.546	21	2.530	2.531	32	2.518	2.515	89
1	0	5	2.165	2.165	13	2.147	2.148	34	2.133	2.131	5
1	1	4	_		_	2.091	2.091	71	2.079	2.079	15
2	0	0	_		_	1.946	1.946	31	1.937	1.938	5
1	1	6	1.706	1.705	27	1.692	1.692	32	1.681	1.681	28
2	0	4	_	_			_		1.656	1.657	7
2	1	3	_		_	1.613	1.627		1.605	1.603	5
0	0	8	1.623	1.624	14	1.609	1.609	21	1.597	1.597	16

decreasing temperature, as usual for nonmetallic materials. Such semiconducting behavior, probably due to the presence of localized electrons in narrow bands, is expected since different ions are disordered on the same crystallographic site. Indeed, Brun *et al.* (9) and Berger *et al.* (10) found that replacement of one-fourth of the Cu atoms in $TlCu_2Se_2$ by Fe ions resulted in changing the properties from highly metallic to semiconducting behavior.

The semiconducting properties of BaKCu₃ MS_4 compounds, which contrast with the results of Hückel tightbinding calculations (11), show that such a model is not sufficiently accurate to predict metallic or insulating behavior in the present case. The disagreement between the electronic structure and the experimental behavior suggests that BaKCu₃ MS_4 materials are Mott insulators.

3.3. Magnetic Susceptibility Measurements

The temperature dependence of the magnetic susceptibility χ for the new phases is presented in Figs. 3 and 4. The magnetic parameters obtained from these plots are summarized in Table 4.

Figure 3 suggests Curie-type behavior down to 2 K for BaKCu₃MnS₄ with an effective magnetic moment of 2.50 μ_B . This behavior contrasts with that of the structurally related phases ACuMnS₂ (A = K, Rb, Cs) where antiferromagnetic exchange in isolated manganese clusters has been suggested (12). That BaKCu₃MnS₄ does not exhibit long-range coupling is consistent with its lower concentration of manganese ions compared to that of the ACuMnS₂ compounds; the mean Mn–Mn distance in BaKCu₃MnS₄ is

FIG. 2. Electrical resistivity of BaKCu₃MnS₄, BaKCu₃CoS₄, and BaKCu₃NiS₄ as a function of temperature.

FIG. 3. (a) Magnetic susceptibility as a function of temperature for BaKCu₃MnS₄ and BaKCu₃CoS₄; (b) inverse magnetic susceptibility.

too large to favor magnetic interactions between manganese ions. On the other hand, BaKCu₃CoS₄ exhibits antiferromagnetic interactions below ~ 12 K. Low-temperature FC and ZFC data suggest spin-glass properties owing to Cu-Co disorder (13). The linear plot of χ^{-1} vs T above ~50 K yields an effective moment of 2.30 $\mu_{\rm B}$ and a positive Curie–Weiss temperature $\theta = 10 \text{ K}$ (Table 4) consistent with the magnetic properties of the related antiferromagnetic TlCo₂Se₂ phase (14, 15). The magnetic moments of BaKCu₃MnS₄ and BaKCu₃CoS₄ are smaller than expected for free Mn²⁺ and Co²⁺, 5.92 and 3.87 $\mu_{\rm B}$, respectively (16). As suggested previously, spin transfer occurring from the 3pband of sulfur to the 3d band of the transition metal might account for the small μ_{eff} values observed, since spin transfer leads to complete filling of the 3d shell of the transition element (17-21). The origin of the suppressed moments may also be due to crystal field effects associated with the short M-M contacts as described by Bronger *et al.* in many related sulfides (22-24).

In contrast to BaKCu₃MnS₄ and BaKCu₃CoS₄, a temperature-independent component dominates the susceptibility behavior of the nickel analogue down to 30 K $(\chi_{\text{TIP}} = 126 \times 10^{-5} \text{ emu.mol}^{-1})$ (Fig. 4). This result shows that the Ni ion does not have localized magnetic moment in BaKCu₃NiS₄, as observed in the structurally related chalcogenides KNi₂X₂ (X = S, Se) (14). The low-temperature upturn is most likely due to the presence of paramagnetic impurities in the sample.

FIG. 4. Temperature dependence of the magnetic susceptibility for $BaKCu_3NiS_4$.

	5 . (, , ,	
Compound	$\chi_{\rm RT}$ (emu.mol ⁻¹)	$\mu_{\rm eff}~(\mu_{\rm B})$	θ (K)
BaKCu ₃ MnS ₄	4.256×10^{-3}	2.50	2
BaKCu ₃ CoS ₄	4.463×10^{-3}	2.30	10
BaKCu ₃ NiS ₄	6.287×10^{-4}		

 TABLE 4

 Magnetic Properties of Transition Metal Sulfides

 BaKCu₃ MS_4 (M = Mn, Co, Ni)^a

 $^{a}\chi_{\text{TIP}}$ (Ni) = 126 × 10⁻⁵ emu.mol⁻¹.

4. CONCLUSION

Single-phase polycrystalline sulfides $BaKCu_3MS_4$ (M = Mn, Co, Ni) were prepared for the first time by CS₂/N₂ sulfurization of BaCO₃, K₂CO₃, and the corresponding transition metal oxides. Electrical resistivity measurements show that the replacement of half of the copper ions in $Ba_{0.80}K_{0.20}Cu_2S_2$ by some divalent element Mn^{2+} , Co^{2+} , Ni^{2+} along with an enhancement of the Ba²⁺substitution for K⁺ drastically changes the electric properties from metallic Ba_{0.80}K_{0.20}Cu₂S₂ to semiconducting BaKCu₃ MS_4 materials. Furthermore, the magnetic properties of those compounds depend on the substituting element. Indeed, BaKCu₃MnS₄ exhibits Curie-like behavior while the temperature dependence of the magnetic susceptibility of the cobalt analogue shows a maximum which was attributed to short-range antiferromagnetic interactions. Besides, a temperature-independent paramagnetic component dominates the susceptibility behavior of BaKCu₃NiS₄.

REFERENCES

- 1. T. H. Geballe, Science 259, 1550 (1993).
- C. H. W. Jones, P. E. Kovacs, R. D. Sharma, and R. S. McMillan, J. Phys. Chem. 94, 832(1990).

- R. Fong, J. R. Dahn, R. J. Batchelor, F. W. B. Einstein, and C. H. W. Jones, *Phys. Rev. B* 39, 4424 (1989).
- 4. Z. Ban and M. Sikirica, Acta Crystallogr. 18, 594 (1965).
- 5. M. Mouallem-Bahout, O. Peña, C. Carel, A. Ouammou, and E.-H. Aqachmar, *Ann. Chim. Fr.* (2000), in press.
- M. Mouallem-Bahout, O. Peña, C. Carel, A. Ouammou, and M. Retat-Savel'eva, Zh. Neorg. Khim. (2000), in press.
- A. Ouammou, M. Mouallem-Bahout, J.-F. Halet, J.-Y. Saillard, and C. Carel, J. Solid State Chem. 117, 73 (1995).
- M. Mouallem-Bahout, M. Potel, J.-F. Halet, M. Retat-Savel'eva, J. Padiou, and C. Carel, *Eur. J. Solid State Inorg. Chem.* 33, 483 (1996).
- G. Brun, B. Gardes, J.-C. Tedenac, A. Raymond, and M. Maurin, Mater. Res. Soc. Bull. 14, 743 (1979).
- R. Berger and C. F. van Bruggen, J. Less-Common Met. 99, 113 (1984).
- J. Llanos, P. Valenzuela, C. Mujica, and A. Buljan, J. Solid State Chem. 122, 31 (1996).
- M. Oledzka, C. L. Lee, K. V. Ramanujachary, and M. Greenblatt, Mater. Res. Soc. Bull. 32, 889 (1997).
- M. Mouallem-Bahout, O. Peña, A. Ouammou, and Carel, J. Phys. Chem. Solids (2000), in press.
- G. Huan, M. Greenblatt, and M. Croft, *Eur. J. Solid State Inorg. Chem.* 26, 193 (1989).
- M. Oledzka, J. G. Lee, K. V. Ramanujachary, and M. Greenblatt, J. Solid State Chem. 127, 151 (1996).
- C. Kittel, in "Introduction to Solid State Physics" (J. H. Hollomon, Ed.). Wiley, New York, 1965.
- I. Felner, I. Mayer, A. Grill, and M. M. Schieber, *Solid State Commun.* 16, 1005 (1975).
- S. Siek, A. Szytula, and J. Leciejewicz, Solid State Commun. 39, 863 (1981).
- J. Leciejewicz, M. Kolenda, and A. Szytula, Solid State Commun. 45, 145 (1983).
- A. Szytula, J. Leciejewicz, and H. Binczycka, *Phys. Stat. Sol. A* 58, 67 (1980).
- W. M. McCall, K. S. V. L. Narasiham, and R. A. Butera, J. Appl. Phys. 44, 4724 (1973).
- 22. I. Felner, J. Phys. Chem. Solids 36, 1063 (1975).
- W. Bronger, in "Crystallography and Crystal Chemistry of Materials with Layered Structures" (F. Levy, Ed.), pp. 93–125. Reidel, Dordrecht, 1976.
- W. Bronger, H. Hardtdegen, M. Kanert, P. Müller, and D. Schmitz, Z. Anorg. Allg. Chem. 662, 313 (1996).
- 25. D. Schmitz and W. Bronger, Z. Anorg. Allg. Chem. 248, 248 (1987).